Brunswick BVP Rampage ${ }^{m}$ - Reactive

Part Number

60-104395-93X

Coverstock

PowrKoil 18 - Reactive
Color: Red/Yellow Pearl
Hardness: 76-78
Glow Engraving
Factory Finish
High Gloss Polish
Core Dynamics @ 16\#
RG Max: 2.580
RG Min: 2.536
RG Diff.: 0.044
Average RG: 4.6
Performance
Hook Potential: 105
Length: 105
Typical Breakpoint Shape: 75
Chart Position: L12
Available Weights
10-16 Pounds

BVP - Brunswick Value Performance - Exceptional Value and Great Performance

The Brunswick BVP ${ }^{\text {TM }}$ series was developed to provide the widest range of reactions available at the popular moderate price point. The BVP series provides any bowler the ball performance they're looking for at a price they can afford.

Technology

The BVP Rampage combines a pearlized PowerKoil 18 coverstock with the proven BVP medium-RG core system to create a ball reaction that fits between the Nemesis and Punisher. With its pearlized surface the Rampage delivers more length and more angularity than the Nemesis and its aggressive PowerKoil 18 coverstock delivers more total hooking action than the Punisher. The new BVP Rampage will send the pins into a frenzy. Get the power of BVP. Go on a Rampage.

Utility

-Out of the Box: With its High Gloss Polish finish the BVP Rampage will match up well on medium-dry to dry conditions.
-When dulled: The BVP Rampage's hooking action will increase and its arc will become more even, creating a better match-up for oily lane conditions and help blend the over/under reactions seen on wet/dry lane conditions.

Reaction Setup

The BVP Rampage can be drilled using the standard drilling techniques developed for two-piece balls, see the included instructions for reaction characteristics and layout details.

The BVP Rampage is finished with Brunswick's Factory Finish High Gloss Polish. To bring your BVP Rampage back to its original factory finish sand the surface to 400-grit then use Brunswick's Factory Finish
High Gloss Polish. Available from your local Pro Shop.

Brunswick:

Maintaining Your Ball Reaction

Brunswick recommends the following procedures to maintain and restore your Brunswick ball's reaction characteristics:
--Clean your Brunswick ball with Brunswick Remove All or similar ball cleaner after every use to reduce oil absorption.
--If you think your Brunswick ball has lost some of its "Out of the Box" reaction, restore the ball to its original factory finish listed on the product information sheet. This is especially important for balls that are highly sanded or polished.
Sand to 400-grit then use Brunswick's Factory Finish High Gloss Polish to restore the original factory finish on high gloss polish balls. Sand to 220-grit then use Brunswick's Factory Finish Rough Buff to restore the original factory finish on rough buff balls. For dull balls, wet sand with the sandpaper listed on the product information sheet.
--If there is a visible track on your ball have your Proshop use a Haas or similar resurfacing machine to remove the track then restore the ball to its original factory finish. This service is available, for a fee, at many Pro Shops
--If after restoring the original factory finish you feel your Brunswick ball has still lost some of its hooking action, remove the oil from the ball by gently warming it with either the Revivor or Rejuvenator Pro Shop devices that have been designed for this purpose. This service is available, for a fee, at many Pro Shops. Brunswick's testing has shown that by combining the restoration of the factory finish, resurfacing of the track and oil removal your Brunswick ball can maintain its original "Out of the Box" reaction for hundreds of games.
--Absorbent materials sold by other bowling ball manufactures to remove oil can also be used on Brunswick bowling balls. Information to date seems to indicate that absorbent materials have a more limited ability to remove oil than warming, so you may be disappointed with results on heavily oil soaked balls.

Note: Oil soaked balls tend to traction less in the oil and respond less to the dry boards on the lane. If you are matching-up using an oil soaked ball on wet/dry or broken down lane conditions, removing the oil from the ball will significantly change your match-up and possibly create undesirable over reactions.

Ball Comparisons

Want to compare the performance of this ball to other Brunswick balls? Go to our web site at www.brunswickbowling.com. Click on Balls, then click on Pro Shop Information. This page contains a link to the Brunswick Ball Comparison Chart. This chart allows you to see, at a glance, the performance of all Brunswick balls relative to each other, defined by their Hook Potential and Arc Characteristics. There's even an essay to help explain and guide you through the chart.

Lightweight Engineering

At Brunswick the unique core shape of each individual ball is used for all weights from 12 to 16 pounds. This approach to lightweight ball engineering is unique in the industry and provides bowlers with consistent ball reaction characteristics across this weight range. This approach also allows Pro Shops to drill lighter weight balls using the same layout techniques as heavier balls with confidence that the lighter ball doesn't need special drilling instructions due to the core shape being different.

Weight	16\#	15\#	14\#	$13 \#$	$12 \#$	11\#	10\#
Core Shape							
RG-max.	2.580	2.593	2.609	2.628	2.670	2.771	2.802
RG-min.	2.536	2.549	2.565	2.584	2.634	2.769	2.800
RG-diff.	0.044	0.044	0.044	0.044	0.036	0.002	0.002

Brunswick's ball drilling instructions include eight layouts; one group of four earlier rolling reactions ($1 \mathrm{E}-4 \mathrm{E}$), and one group of four later rolling reactions ($1 \mathrm{~L}-4 \mathrm{~L}$). Both groups contain layouts that adjust performance from high flare and hook potential to low flare and hook potential. Not every layout is appropriate for all types of releases. Brunswick separates bowler's release characteristics by RPM rate and Track position.

- High-RPM players and Medium-Low RPM players. High RPM players rev the ball at rates greater than 300 RPM. On the men's tour, rev rates range from approximately 250-450 RPM. Most of the men's tour players you see on TV would be considered High RPM players. High RPM players can be sensitive to "over-flaring" which can make the ball hook early and be inconsistent at the breakpoint. Brunswick recommends low to medium flare layouts for High-RPM rate players
- High-Track players and Medium-Low Track players. High Track players have tracks within 1" of the thumb and finger holes and will usually have a horizontal axis measurement near 6" from grip center. Medium-Low track players have tracks that are greater than 1 " from the thumb and finger holes and typically have horizontal axis measurements that are from $31 / 2^{\prime \prime}-5$ ".

After determining your bowler type and ball reaction needs, see the table below for recommended layouts. The Symmetric Core Layout sheet is divided into two columns for "Earlier Rolling" and "Later Rolling" Reactions.

- Earlier Rolling Reactions match up best to oilier and wet/dry lane conditions, or for players who have problems with the ball going too long before changing direction. These will typically be players who have high ball speeds and/or medium-low RPM rates
- Later Rolling Reactions match up best to shorter patterns and drier lane conditions, or for players who have problems with the ball hooking or changing direction too early. These will typically be players who have medium-slow ball speeds and/or high RPM rates.

Track	RPM rate
High	High
High	Medium-Low
Medium-Low	High
Medium-Low	Medium-Low

Earlier Rolling Layouts
3E
No early rolling reactions
$2 \mathrm{E}, 3 \mathrm{E}, 4 \mathrm{E}$
1E,2E,4E

Later Rolling Layouts

2L,3L,4L
1L,2L,3L,4L,
2L,3L.4L
1L,2L,3L,4L

Brunswick recommends positioning the Heavy-Spot / CG to end up with $3 / 4-10$. of positive side weight and a small amount of finger/thumb weight (less than $1 / 4 \mathrm{oz}$.) after drilling. This leaves the driller plenty of room to modify the ball reaction with an X-hole, yet doesn't require that an X-hole be used to make the ball ABC legal.

Fine Tuning Ball Reactions with an X-Hole

X-Holes can be used to increase or decrease track flare.

- Increasing track flare in an existing ball will tend to make the ball more aggressive, hook more, hook earlier and react stronger to the dry areas of the lane.
- Decreasing track flare in an existing ball will tend to make the ball less aggressive, go longer, hook less and react smoother to the dry areas of the lane (less over reaction).

Brunswick is recommending a simplified one-hole size / two-hole position technique that covers the vast majority of ball reaction changes that can be accomplished by drilling an X-hole.

- Use a 1" drill bit, 3" deep, to both increase or decrease track flare.

Note: Larger and deeper X-holes result in only slightly greater increases or decreases in track flare. The one-hole size technique has the added advantage of avoiding problems with illegal static weights. As long as the ball was originally laid out with at least $3 / 4 \mathrm{oz}$. of positive side weight and a small amount of finger/thumb weight, the 1 " $\times 3$ " hole using either of Brunswick's recommended X -hole positions will keep you out of static weight trouble.

Brunswick recommends using a position $21 / 4$ " past the bowlers axis to increase flare, and using a position $21 /{ }^{\prime \prime}$ " back toward the pin to decrease flare. Using the line connecting the bowlers "axis" and the "pin" as a reference line (see diagram). The X-holes should be on or slightly below the reference line (holes on the line will sometimes drop the narrow point of the track and cause the track to flare over the finger holes).

Warning: Drilling a "flare increasing" hole can result in the track flaring over the X -hole. After checking the position of the bowlers last track, make sure the "flare increasing hole" is at least $11 / 2$ " from the bowlers last track (see diagram above). If necessary shorten the distance from axis in order to keep the "flare increasing hole" at least $11 / 2$ " from the bowlers last track.

Brunswick:

High-Differential Symmetric Core Layout Sheet

(RGdiff. 0.040 and above)

High Flare

High Hook Potential

1E (Heavy Oil)
Maximum hook potential for Medium-Low RPM players

This layout may hook early and be inconsistent at the breakpoint for High-RPM players, use layout \#2E instead.

This layout may hit the finger holes for High-Track players, use layout \#1L instead.

2E (Medium Oil)

Maximum hook potential for High-RPM players

Medium hook potential for Medium-Low RPM players

This layout may hit the finger holes for High-Track players, use layout \#2L instead.

3E (Oily Wet/Dry's)

Pin between axis and leverage for medium hook potential and early roll.

Helps moderate over reactions.
This layout may lack hitting power for Medium-Low RPM players.

4E (Hooking Wet/Dry's)

Smooth reaction for moderating wet/dry lane conditions

Lower hook potential than layout \#3E.

This layout may hit the finger holes for High-Track players, use layout \#4L instead.

1L (Heavy Oil)

Maximum hook potential with less mid-lane and more backend than layout \#1E for Medium-Low RPM players

This layout may hook early and be inconsistent at the breakpoint for High-RPM players, use layout \#2L instead.

2L (Medium Oil)

Maximum hook potential for High-RPM players.

Medium hook potential for Medium-Low RPM players

Less mid-lane and more backend than layout \#2E.

3L (Hooking heads)

High RG pin positon with the pin above the fingers for length. X-hole positioned for increased flare.

Moderate hook potential with skid/snap arc to fight early hook in the heads.

Lower hook potential than layout \#2L.

4L (Dry Ianes)

Minimum hook potential for dry lanes and moderating over reactions.

High RG pin position with the pin above the fingers for length

